An elliptic curve test for Mersenne primes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An elliptic curve test for Mersenne primes

Let l ≥ 3 be a prime, and let p = 2 − 1 be the corresponding Mersenne number. The Lucas-Lehmer test for the primality of p goes as follows. Define the sequence of integers xk by the recursion x0 = 4, xk = x 2 k−1 − 2. Then p is a prime if and only if each xk is relatively prime to p, for 0 ≤ k ≤ l − 3, and gcd(xl−2, p) > 1. We show, in the first section, that this test is based on the successiv...

متن کامل

Gaussian Mersenne and Eisenstein Mersenne primes

The Biquadratic Reciprocity Law is used to produce a deterministic primality test for Gaussian Mersenne norms which is analogous to the Lucas–Lehmer test for Mersenne numbers. It is shown that the proposed test could not have been obtained from the Quadratic Reciprocity Law and Proth’s Theorem. Other properties of Gaussian Mersenne norms that contribute to the search for large primes are given....

متن کامل

Questions About the Reductions Modulo Primes of an Elliptic Curve

This is largely a survey paper in which we discuss new and old problems about the reductions Ep modulo primes p of a fixed elliptic curve E defined over the field of rational numbers. We investigate, in particular, how the “noncyclic” part of the group of points of Ep is distributed, thus making progress toward a conjecture of R. Takeuchi. The new result is Theorem 2 of Section 3. Many interest...

متن کامل

Artin Reciprocity and Mersenne Primes

On March 3, 1998, the centenary of Emil Artin was celebrated at the Universiteit van Amsterdam. This paper is based on the two morning lectures, enti-tled`Artin reciprocity and quadratic reciprocity' and`Class eld theory in practice', which were delivered by the authors. It provides an elementary introduction to Artin reciprocity and illustrates its practical use by establishing a recently obse...

متن کامل

Overpseudoprimes, Mersenne Numbers and Wieferich Primes

We introduce a new class of pseudoprimes-so called ”overpseudoprimes” which is a special subclass of super-Poulet pseudoprimes. Denoting via h(n) the multiplicative order of 2 modulo n,we show that odd number n is overpseudoprime if and only if the value of h(n) is invariant of all divisors d > 1 of n. In particular, we prove that all composite Mersenne numbers 2 − 1, where p is prime, and squa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2005

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2003.11.011